echo chambers: old psych, new tech

If you were surprised by the result of the Brexit vote in the UK or by the Trump victory in the US, you might live in an echo chamber – a self-reinforcing world of people who share the same opinions as you. Echo chambers are a problem, and not just because it means some people make incorrect predictions about political events. They threaten our democratic conversation, splitting up the common ground of assumption and fact that is needed for diverse people to talk to each other.

Echo chambers aren’t just a product of the internet and social media, however, but of how those things interact with fundamental features of human nature. Understand these features of human nature and maybe we can think creatively about ways to escape them.

Built-in bias

One thing that drives echo chambers is our tendency to associate with people like us. Sociologists call this homophily. We’re more likely to make connections with people who are similar to us. That’s true for ethnicity, age, gender, education and occupation (and, of course, geography), as well as a range of other dimensions. We’re also more likely to lose touch with people who aren’t like us, further strengthening the niches we find ourselves in. Homophily is one reason obesity can seem contagious – people who are at risk of gaining weight are disproportionately more likely to hang out with each other and share an environment that encourages obesity.

Another factor that drives the echo chamber is our psychological tendency to seek information that confirms what we already know – often called confirmation bias. Worse, even when presented with evidence to the contrary, we show a tendency to dismiss it and even harden our convictions. This means that even if you break into someone’s echo chamber armed with facts that contradict their view, you’re unlikely to persuade them with those facts alone.

News as information and identity

More and more of us get our news primarily from social media and use that same social media to discuss the news.

Social media takes our natural tendencies to associate with similar minded people and seek information that confirms and amplifies our convictions. Dan Kahan, professor of law and psychology at Yale, describes each of us switching between two modes of information processing – identity affirming and truth seeking. The result is that for issues that, for whatever reasons, become associated with a group identity, even the most informed or well educated can believe radically different things because believing those things is tied up with signalling group identity more than a pursuit of evidence.

Mitigating human foibles

Where we go from here isn’t clear. The fundamentals of human psychology won’t just go away, but they do change depending on the environment we’re in. If technology and the technological economy reinforce the echo chamber, we can work to reshape these forces so as to mitigate it.

We can recognise that a diverse and truth-seeking media is a public good. That means it is worth supporting – both in established forms like the BBC, and in new forms like Wikipedia and The Conversation.

We can support alternative funding models for non-public media. Paying for news may seem old-fashioned, but there are long-term benefits. New ways of doing it are popping up. Services such as Blendle let you access news stories that are behind a pay wall by offering a pay-per-article model.

Technology can also help with individual solutions to the echo chamber, if you’re so minded. For Twitter users, otherside.site let’s you view the feed of any other Twitter user, so if you want to know what Nigel Farage or Donald Trump read on Twitter, you can. (I wouldn’t bother with Trump. He only follows 41 people – mostly family and his own businesses. Now that’s an echo chamber.)

For Facebook users, politecho.org is a browser extension that shows the political biases of your friends and Facebook newsfeed. If you want a shortcut, this Wall Street Journal article puts Republican and Democratic Facebook feeds side-by-side.

Of course, these things don’t remove the echo chamber, but they do highlight the extent to which you’re in one, and – as with other addictions – recognising that you have a problem is the first step to recovery.

The ConversationThis article was originally published on The Conversation. Read the original article.

rational judges, not extraneous factors in decisions

The graph tells a drammatic story of irrationality, presented in the 2011 paper Extraneous factors in judicial decisions. What it shows is the outcome of parole board decisions, as ruled by judges, against the order those decisions were made. The circles show the meal breaks taken by the judges.

parole_decisionsAs you can see, the decisions change the further the judge gets from his/her last meal, dramatically decreasing from around 65% chance of a favourable decision if you are the first case after a meal break, to close to 0% if you are the last case in a long series before a break.

In their paper, the original authors argue that this effect of order truly is due to the judges’ hunger, and not a confound introduced by some other factor which affects the order of cases and their chances of success (the lawyers sit outside the closed doors of the court, for example, so can’t time their best cases to come just after a break – they don’t know when the judge is taking a meal; The effect survives additional analysis where severity of prisoner’s crime and length of sentence are factored it; and so on). The interpretation is that as the judges tire they more and more fall back on a simple heuristic – playing safe and refusing parole.

This seeming evidence of the irrationality of judges has been cited hundreds of times, in economics, psychology and legal scholarship. Now, a new analysis by Andreas Glöckner in the journal Judgement and Decision Making questions these conclusions.

Glöckner’s analysis doesn’t prove that extraneous factors weren’t influencing the judges, but he shows how the same effect could be produced by entirely rational judges interacting with the protocols required by the legal system.

The main analysis works like this: we know that favourable rulings take longer than unfavourable ones (~7 mins vs ~5 mins), and we assume that judges are able to guess how long a case will take to rule on before they begin it (from clues like the thickness of the file, the types of request made, the representation the prisoner has and so on). Finally, we assume judges have a time limit in mind for each of the three sessions of the day, and will avoid starting cases which they estimate will overrun the time limit for the current session.

It turns out that this kind of rational time-management is sufficient to  generate the drops in favourable outcomes. How this occurs isn’t straightforward and interacts with a quirk of original author’s data presentation (specifically their graph shows the order number of cases when the number of cases in each session varied day to day – so, for example, it shows that the 12th case after a break is least likely to be judged favourably, but there wasn’t always a 12 case in each session. So sessions in which there were more unfavourable cases were more likely to contribute to this data point).

This story of claim and counter-claim shows why psychologists prefer experiments, since only then can you truly isolate causal explanations (if you are a judge and willing to go without lunch please get in touch). Also, it shows the benefit of simulations for extending the horizons of our intuition. Glöckner’s achievement is to show in detail how some reasonable assumptions – including that of a rational judge – can generate a pattern which hitherto seemed only explainable by the influence of an irrelevant factor on the judges decisions. This doesn’t settle the matter, but it does mean we can’t be so confident that this graph shows what it is often claimed to show. The judges decisions may not be irrational after all, and the timing of the judges meal breaks may not be influencing parole decision outcome.

Original finding: Danziger, S., Levav, J., & Avnaim-Pesso, L. (2011). Extraneous factors in judicial decisions. Proceedings of the National Academy of Sciences, 108(17), 6889-6892.

New analysis: Glöckner, A. (2016). The irrational hungry judge effect revisited: Simulations reveal that the magnitude of the effect is overestimated. Judgment and Decision Making, 11(6), 601-610.

Elsewhere I have written about how evidence of human irrationality is often over-egged : For argument’s sake: evidence that reason can change minds

 

How liars create the illusion of truth

Repetition makes a fact seem more true, regardless of whether it is or not. Understanding this effect can help you avoid falling for propaganda, says psychologist Tom Stafford.

“Repeat a lie often enough and it becomes the truth”, is a law of propaganda often attributed to the Nazi Joseph Goebbels. Among psychologists something like this known as the “illusion of truth” effect. Here’s how a typical experiment on the effect works: participants rate how true trivia items are, things like “A prune is a dried plum”. Sometimes these items are true (like that one), but sometimes participants see a parallel version which isn’t true (something like “A date is a dried plum”).

After a break – of minutes or even weeks – the participants do the procedure again, but this time some of the items they rate are new, and some they saw before in the first phase. The key finding is that people tend to rate items they’ve seen before as more likely to be true, regardless of whether they are true or not, and seemingly for the sole reason that they are more familiar.

So, here, captured in the lab, seems to be the source for the saying that if you repeat a lie often enough it becomes the truth. And if you look around yourself, you may start to think that everyone from advertisers to politicians are taking advantage of this foible of human psychology.

But a reliable effect in the lab isn’t necessarily an important effect on people’s real-world beliefs. If you really could make a lie sound true by repetition, there’d be no need for all the other techniques of persuasion.

One obstacle is what you already know. Even if a lie sounds plausible, why would you set what you know aside just because you heard the lie repeatedly?

Recently, a team led by Lisa Fazio of Vanderbilt University set out to test how the illusion of truth effect interacts with our prior knowledge. Would it affect our existing knowledge? They used paired true and un-true statements, but also split their items according to how likely participants were to know the truth (so “The Pacific Ocean is the largest ocean on Earth” is an example of a “known” items, which also happens to be true, and “The Atlantic Ocean is the largest ocean on Earth” is an un-true item, for which people are likely to know the actual truth).

Their results show that the illusion of truth effect worked just as strongly for known as for unknown items, suggesting that prior knowledge won’t prevent repetition from swaying our judgements of plausibility.

To cover all bases, the researchers performed one study in which the participants were asked to rate how true each statement seemed on a six-point scale, and one where they just categorised each fact as “true” or “false”. Repetition pushed the average item up the six-point scale, and increased the odds that a statement would be categorised as true. For statements that were actually fact or fiction, known or unknown, repetition made them all seem more believable.

At first this looks like bad news for human rationality, but – and I can’t emphasise this strongly enough – when interpreting psychological science, you have to look at the actual numbers.

What Fazio and colleagues actually found, is that the biggest influence on whether a statement was judged to be true was… whether it actually was true. The repetition effect couldn’t mask the truth. With or without repetition, people were still more likely to believe the actual facts as opposed to the lies.

This shows something fundamental about how we update our beliefs – repetition has a power to make things sound more true, even when we know differently, but it doesn’t over-ride that knowledge

The next question has to be, why might that be? The answer is to do with the effort it takes to being rigidly logical about every piece of information you hear. If every time you heard something you assessed it against everything you already knew, you’d still be thinking about breakfast at supper-time. Because we need to make quick judgements, we adopt shortcuts – heuristics which are right more often than wrong. Relying on how often you’ve heard something to judge how truthful something feels is just one strategy. Any universe where truth gets repeated more often than lies, even if only 51% vs 49% will be one where this is a quick and dirty rule for judging facts.

If repetition was the only thing that influenced what we believed we’d be in trouble, but it isn’t. We can all bring to bear more extensive powers of reasoning, but we need to recognise they are a limited resource. Our minds are prey to the illusion of truth effect because our instinct is to use short-cuts in judging how plausible something is. Often this works. Sometimes it is misleading.

Once we know about the effect we can guard against it. Part of this is double-checking why we believe what we do – if something sounds plausible is it because it really is true, or have we just been told that repeatedly? This is why scholars are so mad about providing references – so we can track the origin on any claim, rather than having to take it on faith.

But part of guarding against the illusion is the obligation it puts on us to stop repeating falsehoods. We live in a world where the facts matter, and should matter. If you repeat things without bothering to check if they are true, you are helping to make a world where lies and truth are easier to confuse. So, please, think before you repeat.

This is my BBC Future column from the other week, the original is here. For more on this topic, see my ebook : For argument’s sake: evidence that reason can change minds (smashwords link here)

reinforcing your wiser self

phoneNautilus has a piece by David Perezcassar on how technology takes advantage of our animal instinct for variable reward schedules (Unreliable rewards trap us into addictive cell phone use, but they can also get us out).

It’s a great illustrated read about the scientific history of the ideas behind ‘persuasive technology’, and ends with a plea that perhaps we can hijack our weakness for variable reward schedules for better ends:

What is we set up a variable reward system to reward ourselves for the time spent away fro our phones & physically connecting with others? Even time spend meditating or reading without technological distractions is a heroic endeavor worthy of a prize

Which isn’t a bad idea, but the pattern of the reward schedule is only one factor in what makes an activity habit forming. The timing of a reward is more important than the reliability – it’s easier to train in habits with immediate than delayed rewards. The timing is so crucial that in the animal learning literature even a delay of 2 seconds between a lever press and the delivery of a food pellet impairs learning in rats. In experiments we did with humans a delay of 150ms we enough to hinder our participants connecting their own actions with a training signal.

So the dilemma for persuasive technology, and anyone who wants to free themselves from its hold, is not just how phones/emails/social media structure our rewards, but also the fact that they allow gratification at almost any moment. There are always new notifications, new news, and so phones let us have zero delay for the reward of checking our phones. If you want to focus on other things, like being a successful parent, friend or human the delays on the rewards of these are far larger (not to mention more nebulous).

The way I like to think about it is the conflict between the impatient, narrow, smaller self – the self that likes sweets and gossip and all things immediate gratification – and the wider, wiser self – the self than invests in the future and carers about the bigger picture. That self can win out, does win out as we make our stumbling journey into adulthood, but my hunch is we’re going to need a different framework from the one of reinforcement learning to do it

Nautilus article: Unreliable rewards trap us into addictive cell phone use, but they can also get us out

Mindhacks.com: post about reinforcement schedules, and how they might be used to break technology compulsion (from 2006 – just sayin’)

George Ainslie’s book Breakdown of Will is what happens if you go so deep into the reinforcement learning paradigm you explode its reductionism and reinvent the notion of the self. Mind-alteringly good.

Do students know what’s good for them?

Of course they do, and of course they don’t.

Putting a student at the centre of their own learning seems like fundamental pedagogy. The Constructivist approach to education emphasises the need for knowledge to reassembled in the mind of the learner, and the related impossibility of its direct transmission from the mind of the teacher. Believe this, and student input into how they learn must follow.

At the same time, we know there is a deep neurobiological connection between the machinery of reward in our brain, and that of learning. Both functions seem to be entangled in the subcortical circuitry of a network known as the basal ganglia. It’s perhaps not surprising that curiosity, which we all know personally to be a powerful motivator of learning, activates the same subcortical circuitry involved in the pleasurable anticipation of reward. Further, curiosity enhances memory, even for things you learn while your curiosity is aroused about something else.

This neurobiological alignment of enjoyment and learning isn’t mere coincidence. When building learning algorithms for embedding in learning robots, the basic rules of learning from experience have to be augmented with a drive to explore – curiosity! – so that they don’t become stuck repeating suboptimal habits. Whether it is motivated by curiosity or other factors, exploration seems to support enhanced learning in a range of domains from simple skills to more complex ideas.

Obviously we learn best when motivated, and when learning is fun, and allowing us to explore our curiosity is a way to allow both. However, putting the trajectory of their experience into students’ hands can go awry.

False beliefs impede learning

One reason is false beliefs about how much we know, or how we learn best. Psychologists studying memory have long documented such metacognitive errors, which include overconfidence, and a mistaken reliance on our familiarity with a thing as a guide to how well we understand it, or how well we’ll be able to recall it when tested (recognition and recall are in fact different cognitive processes). Sure enough, when tested in experiments people will over-rely on ineffective study strategies (like rereading, or reviewing the answers to questions, rather than testing their ability to generate the answers from the questions). Cramming is another ineffective study strategy, with experiment after experiment showing the benefit of spreading out your study rather than massing it all together. Obviously this requires being more organised, but my belief is that a metacognitive error supports students’ over-reliance on cramming – cramming feels good, because, for a moment, you feel familiar with all the information. The problem is that this feel-good familiarity isn’t the kind of memory that will support recall in an exam, but immature learners often don’t realise the extent of that.

In agreement with these findings from psychologists, education scholars have reacted against pure student-led or discovery learning, with one review summarising the findings from multiple distinct research programmes taking place over three decades: “In each case, guided discovery was more effective than pure discovery in helping students learn and transfer”.

The solution: balancing guided and discovery learning

This leaves us at a classic “middle way”, where pure student-led or teacher-led learning is ruled out. Some kind of guided exploration, structured study, or student choice in learning is obviously a necessity, but we’re not sure how much.

There’s an exciting future for research which informs us what the right blend of guided and discovery learning is, and which students and topics suit which exact blend. One strand of this is to take the cognitive psychology experiments which demonstrate a benefit of active choice learning over passive instruction and to tweak them so that we can see when passive instruction can be used to jump-start or augment active choice learning. One experiment from Kyle MacDonald and Michael Frank of Stanford University used a highly abstract concept learning task in which participants use trial and error to figure out a categorisation of different shapes. Previous research had shown that people learned faster if they were allowed to choose their own examples to receive feedback on, but this latest iteration of the experiment from MacDonald and Frank showed that an initial session of passive learning, where the examples were chosen for the learner boosted performance even further. Presumably this effect is due to the scaffolding in the structure of the concept-space that the passive learning gives the learner. This, and myriad experiments, are possible to show when and how active learning and instructor-led learning can be blended.

Education is about more than students learning the material on the syllabus. There is a meta-goal of producing students who are better able to learn for themselves. The same cognitive machinery in all of us might push us towards less effective strategies. The simple fact of being located within our own selfish consciousness means that even the best performers in the world need a coach to help them learn. But as we mature we can learn to better avoid pitfalls in our learning and evolve into better self-determining students. Ultimately the best education needs to keep its focus on that need to help each of us take on more and more responsibility for how we learn, whether that means submitting to others’ choices or exploring things for ourselves – or, often, a bit of both.

This post originally appeared on the NPJ ‘Science of Learning’ Community

Does ‘brain training’ work?

You’ve probably heard of “brain training exercises” – puzzles, tasks and drills which claim to keep you mentally agile. Maybe, especially if you’re an older person, you’ve even bought the book, or the app, in the hope of staving off mental decline. The idea of brain training has widespread currency, but is that due to science, or empty marketing?

Now a major new review, published in Psychology in the Public Interest, sets out to systematically examine the evidence for brain training. The results should give you pause before spending any of your time and money on brain training, but they also highlight what happens when research and commerce become entangled.

The review team, led by Dan Simons of the University of Illinois, set out to inspect all the literature which brain training companies cited in their promotional material – in effect, taking them at their word, with the rationale that the best evidence in support of brain training exercises would be that cited by the companies promoting them.

The chairman says it works

A major finding of the review is the poverty of the supporting evidence for these supposedly scientific exercises. Simons’ team found that half of the brain training companies that promoted their products as being scientifically validated didn’t cite any peer-reviewed journal articles, relying instead on things like testimonials from scientists (including the company founders). Of the companies which did cite evidence for brain training, many cited general research on neuroplasticity, but nothing directly relevant to the effectiveness of what they promote.

The key issue for claims around brain training is that practising these exercises will help you in general, or on unrelated tasks. Nobody doubts that practising a crossword will help you get better at crosswords, but will it improve your memory, your IQ or your ability to skim read email? Such effects are called transfer effects, and so called “far transfer” (transfer to a very different task than that trained) is the ultimate goal of brain training studies. What we know about transfer effect is reviewed in Simons’ paper.

Doing puzzles make you, well, good at doing puzzles.
Jne Valokuvaus/Shutterstock.com

As well as trawling the company websites, the reviewers inspected a list provided by an industry group (Cognitive Training Data of some 132 scientific papers claiming to support the efficacy of brain training. Of these, 106 reported new data (rather than being reviews themselves). Of those 106, 71 used a proper control group, so that the effects of the brain training could be isolated. Of those 71, only 49 had so called “active control” group, in which the control participants actually did something rather than being ignored by the the researchers. (An active control is important if you want to distinguish the benefit of your treatment from the benefits of expectation or responding to researchers’ attentions.) Of these 49, about half of the results came from just six studies.

Overall, the reviewers conclude, no study which is cited in support of brain training products meets the gold standard for best research practises, and few even approached the standard of a good randomised control trial (although note their cut off for considering papers missed this paper from late last year).

A bit premature

The implications, they argue, are that claims for general benefits of brain training are premature. There’s excellent evidence for benefits of training specific to the task trained on, they conclude, less evidence for enhancement on closely related tasks and little evidence that brain training enhances performance on distantly related tasks or everyday cognitive performance.

The flaws in the studies supporting the benefits of brain training aren’t unique to the study of brain training. Good research is hard and all studies have flaws. Assembling convincing evidence for a treatment takes years, with evidence required from multiple studies and from different types of studies. Indeed, it may yet be that some kind of cognitive training can be shown to have the general benefits that are hoped for from existing brain training exercises. What this review shows is not that brain training can’t work, merely that promotion of brain training exercises is – at the very least – premature based on the current scientific evidence.

Yet in a 2014 survey of US adults, over 50% had heard of brain training exercises and showed some credence to their performance enhancing powers. Even the name “brain training”, the authors of the review admit, is a concession to marketing – this is how people know these exercises, despite their development having little to do with the brain directly.

The widespread currency of brain training isn’t because of overwhelming evidence of benefits from neuroscience and psychological science, as the review shows, but it does rely on the appearance of being scientifically supported. The billion-dollar market in brain training is parasitic on the credibility of neuroscience and psychology. It also taps into our lazy desire to address complex problems with simple, purchasable, solutions (something written about at length by Ben Goldacre in his book Bad Science).

The Simons review ends with recommendations for researchers into brain training, and for journalists reporting on the topic. My favourite was their emphasis that any treatment needs to be considered for its costs, as well as its benefits. By this standard there is no commercial brain training product which has been shown to have greater benefits than something you can do for free. Also important is the opportunity cost: what could you be doing in the time you invest in brain training? The reviewers deliberately decided to focus on brain training, so they didn’t cover the proven and widespread benefits of exercise for mental function, but I’m happy to tell you now that a brisk walk round the park with a friend is not only free, and not only more fun, but has better scientific support for its cognitive-enhancing powers than all the brain training products which are commercially available.

The Conversation

Tom Stafford, Lecturer in Psychology and Cognitive Science, University of Sheffield

This article was originally published on The Conversation. Read the original article.