How curiosity can save you from political tribalism

Neither intelligence nor education can stop you from forming prejudiced opinions – but an inquisitive attitude may help you make wiser judgements.

Ask a left-wing Brit what they believe about the safety of nuclear power, and you can guess their answer. Ask a right-wing American about the risks posed by climate change, and you can also make a better guess than if you didn’t know their political affiliation. Issues like these feel like they should be informed by science, not our political tribes, but sadly, that’s not what happens.

Psychology has long shown that education and intelligence won’t stop your politics from shaping your broader worldview, even if those beliefs do not match the hard evidence. Instead, your ability to weigh up the facts may depend on a less well-recognised trait – curiosity.

The political lens

There is now a mountain of evidence to show that politics doesn’t just help predict people’s views on some scientific issues; it also affects how they interpret new information. This is why it is a mistake to think that you can somehow ‘correct’ people’s views on an issue by giving them more facts, since study after study has shown that people have a tendency to selectively reject facts that don’t fit with their existing views.

This leads to the odd situation that people who are most extreme in their anti-science views – for example skeptics of the risks of climate change – are more scientifically informed than those who hold anti-science views but less strongly.

But smarter people shouldn’t be susceptible to prejudice swaying their opinions, right? Wrong. Other research shows that people with the most education, highest mathematical abilities, and the strongest tendencies to be reflective about their beliefs are the most likely to resist information which should contradict their prejudices. This undermines the simplistic assumption that prejudices are the result of too much gut instinct and not enough deep thought. Rather, people who have the facility for deeper thought about an issue can use those cognitive powers to justify what they already believe and find reasons to dismiss apparently contrary evidence.

It’s a messy picture, and at first looks like a depressing one for those who care about science and reason. A glimmer of hope can be found in new research from a collaborative team of philosophers, film-makers and psychologists led by Dan Kahan of Yale University.

Kahan and his team were interested in politically biased information processing, but also in studying the audience for scientific documentaries and using this research to help film-makers. They developed two scales. The first measured a person’s scientific background, a fairly standard set of questions asking about knowledge of basic scientific facts and methods, as well as quantitative judgement and reasoning. The second scale was more innovative. The idea of this scale was to measure something related but independent – a person’s curiosity about scientific issues, not how much they already knew. This second scale was also innovative in how they measured scientific curiosity. As well as asking some questions, they also gave people choices about what material to read as part of a survey about reactions to news. If an individual chooses to read about science stories rather than sports or politics, their corresponding science curiosity score was marked up.

Armed with their scales, the team then set out to see how they predicted people’s opinions on public issues which should be informed by science. With the scientific knowledge scale the results were depressingly predictable. The left-wing participants – liberal Democrats – tended to judge issues such as global warming or fracking as significant risks to human health, safety or prosperity. The right-wing participants – conservative Republicans – were less likely to judge the issues as significant risks. What’s more, the liberals with more scientific background were most concerned about the risks, while the conservatives with more scientific background were least concerned. That’s right – higher levels of scientific education results in a greater polarisation between the groups, not less.

So much for scientific background, but scientific curiosity showed a different pattern. Differences between liberals and conservatives still remained – on average there was still a noticeable gap in their estimates of the risks – but their opinions were at least heading in the same direction. For fracking for example, more scientific curiosity was associated with more concern, for both liberals and conservatives.

The team confirmed this using an experiment which gave participants a choice of science stories, either in line with their existing beliefs, or surprising to them. Those participants who were high in scientific curiosity defied the predictions and selected stories which contradicted their existing beliefs – this held true whether they were liberal or conservative.

And, in case you are wondering, the results hold for issues in which political liberalism is associated with the anti-science beliefs, such as attitudes to GMO or vaccinations.

So, curiosity might just save us from using science to confirm our identity as members of a political tribe. It also shows that to promote a greater understanding of public issues, it is as important for educators to try and convey their excitement about science and the pleasures of finding out stuff, as it is to teach people some basic curriculum of facts.

This is my BBC Future column from last week. The original is here. My ebook ‘For argument’s sake: evidence that reason can change minds’ is out now

Making the personal, geospatial

CC licensed photo by Flickr user Paul Townsend. Click for origin.There is an old story in London, and it goes like this. Following extensive rioting, there is an impassioned debate about the state of society with some saying it shows moral decay while others claim it demonstrates the desperation of poverty.

In 1886, London hosted one of its regular retellings when thousands of unemployed people trashed London’s West End during two days of violent disturbances.

In the weeks of consternation that followed, the press stumbled on the work of wealthy ship owner Charles Booth who had begun an unprecedented project – mapping poverty across the entire city.

He started the project because he thought Henry Hyndman was bullshitting.

Hyndman, a rather too earnest social campaigner, claimed that 1 in 4 Londoners lived in poverty, a figure Booth scoffed at as a gross exaggeration.

So Booth paid for an impressive team of researchers and sent to them out to interview officials who assessed families for compulsory schooling and he created a map, initially of the East End, and eventually as far west as Hammersmith, of every house and the social state of the families within it.

Each dwelling was classified into seven gradations – from “Wealthy; upper middle and upper classes” to “Lowest class; vicious, semi-criminal”. For the first time, deprivation could be seen etched into London’s social landscape.

I suspect that the term ‘vicious’ referred to its older meaning: ‘of given to vice’- rather than cruel. But what Booth created, for the first time and in exceptional detail, was a map of social environments.

The map is amazingly detailed. Literally, a house by house mapping of the whole of London.

The results showed that Hyndman was indeed wrong, but not in the direction Booth assumed. He found 1 in 3 Londoners lived below the poverty line.

If you know a bit about the capital today, you can see how many of the deprived areas from 1886 are still some of the most deprived in 2016.

So I was fascinated when I read about a new study that allows poverty to be mapped from the air, using machine learning to analyse satellite images Nigeria, Tanzania, Uganda, Malawi, and Rwanda.

But rather than pre-defining what counts as an image of a wealthy area (swimming pools perhaps?) compared to an impoverished one (unpaved roads maybe), they trained a neural network learn its own associations between image properties and income on an initial set of training data before trying it out on new data sets.

The neural network could explain up to 75% of the variation in the local economy.

Knowing both the extent and geography of poverty is massively important. It allows a macro view of something that manifests in very local ways, mapping it to street corners, housing blocks and small settlements.

It makes the vast forces of the economy, personal.

Link to Booth’s poverty map.
Link to Science reporting of satellite mapping study.

The science of urban paranoia

CC Licensed Image by Flickr user 01steven. Click for source.I’ve got an article in The Atlantic on how paranoia and psychosis are more common in cities and why the quest to explain the ‘urban psychosis effect’ is reshaping psychiatry.

The more urban your neighbourhood, the higher the rate of diagnosed schizophrenia and you are more likely to experience what are broadly known as ‘non-affective psychosis-psychoses’ – that is, delusions, hallucinations, and paranoia not primarily caused by mood problems.

This has led to a long and ongoing debate about why this is, with some arguing that it is an effect of city-living on the mind, while others arguing the association is better explained by a complex interaction between genetic risk factors and limited life chances.

The article discusses the science behind exactly this debate, partly a judgement on the value of the city itself, and notes how it’s pushing psychiatry to re-examine how it deals with what is often euphemistically called ‘the environment’.

Link to ‘The Mystery of Urban Psychosis’ in The Atlantic.

A podcast on drugs

If you’re a podcast addict, you could no worse than checking out Say Why to Drugs an excellent new show that covers the science behind a different recreational drug each week.

The podcast is with psychologist and drugs researcher Suzi Gage and rhyme-smith Scroobius Pip, better known for his banging tunes.

They make for a great partnership and they breakdown everything from the psychopharmacology of MDMA to the social impact of ketamine and do plenty of myth-busting along the way.

Thoroughly listenable, good fun and great on the science, you can find it on acast and iTunes.

Link to podcast on ITunes
Link to podcast on acast

Spike activity 24-06-2016

Quick links from the past week in mind and brain news:

Why do some children thrive in adult life despite a background of violence and neglect? Fascinating piece from Mosaic.

Scientific American asks with the flood of neuroscience PhDs, where will all the neuroscientists go? Ask British neuroscientists, they’re probably weighing up their options right now.

Blobs and Pitfalls: Challenges for fMRI Research. Neuroskeptic covers one of a number of ‘rethinking fMRI research pieces’ that has recently come out.

Neurocritic casts a skeptical over several new oxytocin papers that have appeared.

Was Dr. Asperger A Nazi? The Question Still Haunts Autism. A complex question tackled over at NPR.

Psychodiagnosticator asks What do we talk about when we talk about schizophrenia?

There’s a fascinating discussion on language and the culture of internal meaning over at The Psychologist.

Invisibilia, NPR’s people and cognitive science show, has just kicked off a new series.

Sleight of mind in fMRI

I’ve written a piece for the BPS Research Digest about a fascinating study that caused people to feel their thoughts were being controlled by outside forces.

It’s a psychologically intriguing study because it used the psychology lab to conduct the study but it also used the psychology lab as a form of misdirection, so participants wouldn’t realise that the effect of having their ‘thoughts read’ and ‘thoughts inserted into their mind’ was in fact a common trick used in stage mentalism.

The interesting bit came where the researchers recorded whether participants reacted differently when they thought their thoughts were being read (they did) and asked about their experience of it happening (when it never actually did).

They reported a range of anomalous effects when they thought numbers were being “inserted” into their minds: A number “popped in” my head, reported one participant. Others described “a voice … dragging me from the number that already exists in my mind”, feeling “some kind of force”, feeling “drawn” to a number, or the sensation of their brain getting “stuck” on one number. All a striking testament to the power of suggestion.

A really wonderfully conceived study that may provide a useful tool for temporarily inducing the feeling of not controlling your own thoughts – something that occurs in a range of psychological difficulties and disorders.

Link to piece on BPS Research Digest.

The mechanics of subtle discrimination: measuring ‘microaggresson’

Many people don’t even realise that they are discriminating based on race or gender. And they won’t believe that their unconscious actions have consequences until they see scientific evidence. Here it is.

The country in which I live has laws forbidding discrimination on the grounds of ethnicity, religion, sexuality or sex. We’ve come a long way since the days when the reverse was true – when homosexuality was illegal, for instance, or when women were barred from voting. But this doesn’t mean that prejudice is over, of course. Nowadays we need to be as concerned about subtler strains of prejudice as the kind of loud-mouthed racism and sexism that makes us ashamed of the past.

Subtle prejudice is the domain of unjustified assumptions, dog-whistles, and plain failure to make the effort to include people who are different from ourselves, or who don’t fit our expectations. One word for the expressions of subtle prejudice is ‘microaggressions’. These are things such as repeating a thoughtless stereotype, or too readily dismissing someone’s viewpoint – actions that may seem unworthy of comment, but can nevertheless marginalise an individual.

The people perpetrating these microaggressions may be completely unaware that they hold a prejudiced view. Psychologists distinguish between our explicit attitudes – which are the beliefs and feelings we’ll admit to – and our implicit attitudes – which are our beliefs and feelings which are revealed by our actions. So, for example, you might say that you are not a sexist, you might even say that you are anti-sexist, but if you interrupt women more than men in meetings you would be displaying a sexist implicit attitude – one which is very different from that non-sexist explicit attitude you profess.

‘Culture of victimhood’

The thing about subtle prejudice is that it is by definition subtle – lots of small differences in how people are treated, small asides, little jibes, ambiguous differences in how we treat one person compared to another. This makes it hard to measure, and hard to address, and – for some people – hard to take seriously.

This is the skeptical line of thought: when people complain about being treated differently in small ways they are being overly sensitive, trying to lay claim to a culture of victimhood. Small differences are just that – small. They don’t have large influences on life outcomes and aren’t where we should focus our attention.

Now you will have your own intuitions about that view, but my interest is in how you could test the idea that a thousand small cuts do add up. A classic experiment on the way race affects our interactions shows not only the myriad ways in which race can affect how we treat people, but shows in a clever way that even the most privileged of us would suffer if we were all subjected to subtle discrimination.

In the early 1970s, a team led by Carl Word at Princeton University recruited white students for an experiment they were told was about assessing the quality of job candidates. Unbeknown to them, the experiment was really about how they treated the supposed job candidates, and whether this was different based on whether they were white or black.

Despite believing their task was to find the best candidate, the white recruits treated candidates differently based on their race – sitting further away from them, and displaying fewer signs of engagement such as making eye-contact or leaning in during conversation. Follow-up work more recently has shown that this is still true, and that these nonverbal signs of friendliness weren’t related to their explicit attitudes, so operate independently from the participants’ avowed beliefs about race and racism.

So far the the Princeton experiment probably doesn’t tell anyone who has been treated differently because of their race anything they didn’t know from painful experience. The black candidates in this experiment were treated less well than the white candidates, not just in the nonverbal signals the interviewers gave off, but they were given 25% less time during the interviews on average as well. This alone would be an injustice, but how big a disadvantage is it to be treated like this?

Word’s second experiment gives us a handle on this. After collecting these measurements of nonverbal behaviour the research team recruited some new volunteers and trained them to react in the manner of the original experimental subjects. That is, they were trained to treat interview candidates as the original participants had treated white candidates: making eye contact, smiling, sitting closer, allowing them to speak for longer. And they were also trained to produce the treatment the black candidates received: less eye contact, fewer smiles and so on. All candidates were to be treated politely and fairly, with only the nonverbal cues varying.

Next, the researchers recruited more white Princeton undergraduates to play the role of job candidates, and they were randomly assigned to be nonverbally treated like the white candidates in the first experiment, or like the black candidates.

The results allow us to see the self-fulfilling prophesy of discrimination. The candidates who received the “black” nonverbal signals delivered a worse interview performance, as rated by independent judges. They made far more speech errors, in the form of hesitations, stutters, mistakes and incomplete sentences, and they chose to sit further away from the interviewer following a mid-interview interruption which caused them to retake their chairs.

It isn’t hard to see that in a winner-takes-all situation like a job interview, such differences could be enough to lose you a job opportunity. What’s remarkable is that the participants’ performance had been harmed by nonverbal differences of the kind that many of us might produce without intending or realising. Furthermore, the effect was seen in students from Princeton University, one of the world’s elite universities. If even a white, privileged elite suffer under this treatment we might expect even larger effects for people who don’t walk into high-pressure situations with those advantages.

Experiments like these don’t offer the whole truth about discrimination. Problems like racism are patterned by so much more than individual attitudes, and often supported by explicit prejudice as well as subtle prejudice. Racism will affect candidates before, during and after job interviews in many more ways than I’ve described. What this work does show is one way in which, even with good intentions, people’s reactions to minority groups can have powerful effects. Small differences can add up.

This is my BBC Future column from last week. The original is here.