The backfire effect is elusive

The backfire effect is when correcting misinformation hardens, rather than corrects, someone’s mistaken belief. It’s a relative of so called ‘attitude polarisation’ whereby people’s views on politically controversial topics can get more, not less, extreme when they are exposed to counter-arguments.

The finding that misperception are hard to correct is not new – it fits with research on the tenacity of beliefs and the difficulty of debunking.

The backfire effect appears to give an extra spin on this. If backfire effects hold, then correcting fake news can be worse than useless – the correction could reinforce the misinformation in people’s minds. This is what Brendan Nyhan and Jason Reifler warned about in a 2010 paper ‘When Corrections Fail: The Persistence of Political Misperceptions’.

Now, work by Tom Wood and Ethan Porter suggests that backfire effects may not be common or reliable. Reporting in their ‘The Elusive Backfire Effect: Mass Attitudes’ Steadfast Factual Adherence’ they exposed over 10,000 mechanical turk participants, over 5 experiments and 52 different topics, to misleading statements from American politicians from both of the two main parties. Across all statements, and all experiments, they found that showing people corrections moved their beliefs away from the false information. There was an effect of the match between the ideology of the participant and of the politician, but it wasn’t large:

Among liberals, 85% of issues saw a significant factual response to correction, among moderates, 96% of issues, and among conservatives, 83% of issues. No backfire was observed for any issue, among any ideological cohort

All in all, this suggests, in their words, that ‘The backfire effect is far less prevalent than existing research would indicate’. Far from being counter-productive, corrections work. Part of the power of this new study is that it uses the same materials and participants as the 2010 paper reporting backfire effects – statements about US politics and US citizens. Although the numbers mean the new study in convincing, it doesn’t show the backfire effect will never occur, especially for different attitudes in different contexts or nations.

So, don’t give up on fact checking just yet – people are more more reasonable about their beliefs than the backfire suggests.

Original paper: Nyhan, B., & Reifler, J. (2010). When corrections fail: The persistence of political misperceptions. Political Behavior, 32(2), 303-330.

New studies: Wood, T., & Porter, E. (in press). The elusive backfire effect: Mass attitudes’ steadfast factual adherence. Political Behaviour.

The news is also good in a related experiment on fake news by the same team: Sex Trafficking, Russian Infiltration, Birth Certificates, and Pedophilia: A Survey Experiment Correcting Fake News. Regardless of ideology or content of fake news, people were responsive to corrections.

Read more about the psychology of responsiveness to argument in my ‘For argument’s sake: evidence that reason can change minds’.

Open Science Essentials: Reproducibility

Open science essentials in 2 minutes, part 3

Let’s define it this way: reproducibility is when your experiment or data analysis can be reliably repeated. It isn’t replicability, which we can define as reproducing an experiment and subsequent analysis and getting qualitatively similar results with the new data. (These aren’t universally accepted definitions, but they are common, and enough to get us started).

Reproducibility is a bedrock of science – we all know that our methods section should contain enough detail to allow an independent researcher to repeat our experiment. With the increasing use of computational methods in psychology, there’s increasing need – and increasing ability – for us to share more than just a description of our experiment or analysis.

Reproducible methods

Using sites like the Open Science Framework you can share stimuli and other materials. If you use open source experiment software like PsychoPy or Tatool you can easily share the full scripts which run your experiment and people on different platforms and without your software licenses can still run your experiment.

Reproducible analysis

Equally important is making your analysis reproducible. You’d think that with the same data, another person – or even you in the future – would get the same results. Not so! Most analyses include thousands of small choices. A mis-step in any of these small choices – lost participants, copy/paste errors, mis-labeled cases, unclear exclusion criteria – can derail an analysis, meaning you get different results each time (and different results from what you’ve published).

Fortunately a solution is at hand! You need to use analysis software that allows you to write a script to convert your raw data into your final output. That means no more Excel sheets (no history of what you’ve done = very bad – don’t be these guys) and no more point-and-click SPSS analysis.

Bottom line: You must script your analysis – trust me on this one

Open data + code

You need to share and document your data and your analysis code. All this is harder work than just writing down the final result of an analysis once you’ve managed to obtain it, but it makes for more robust analysis, and allows someone else to reproduce your analysis easily in the future.

The most likely beneficiary is you – you most likely collaborator in the future is Past You, and Past You doesn’t answer email. Every analysis I’ve ever done I’ve had to repeat, sometimes years later. It saves time in the long run to invest in making a reproducible analysis first time around.

Further Reading

Nick Barnes: Publish your computer code: it is good enough

British Ecological Society: Guide to Reproducible Code

Gael Varoquaux : Computational practices for reproducible science

Advanced

Reproducible Computational Workflows with Continuous Analysis

Best Practices for Computational Science: Software Infrastructure and Environments for Reproducible and Extensible Research

Part of a series for graduate students in psychology.
Part 1: pre-registration.
Part 2: the Open-Science Framework.

Part 3: Reproducibility